Chapter 5
Vector Analysis
5.1 Introduction

Vector calculus (or vector analysis) is a branch of mathematics concerned with differentiation and integration of vector fields, primarily in 3 dimensional Euclidean space 
[image: image1.wmf]3

Â

. Vector calculus plays an important role in differential geometry and in the study of partial differential equations.        It is used extensively in physics and engineering, especially in the description of electromagnetic fields, gravitational fields and fluid flow. In the traditional form using cross products, vector calculus does not generalize to higher dimensions, while the alternative approach of geometric algebra, which uses exterior products, does generalize. Certain physical quantities such as mass or the absolute temperature at some point only have magnitude. These quantities can be represented by numbers alone, with the appropriate units, and they are called scalars. There are, however, other physical quantities which have both magnitude and direction; the magnitude can stretch or shrink, and the direction can reverse. These quantities can be added in such a way that takes into account both direction and magnitude. Force is an example of a quantity that acts in a certain direction with some magnitude that we measure in newtons. A vector field is a function of spatial position whose values are vectors. In 3D, we commonly use right-handed Cartesian coordinates (x, y, z). We write i, j, k for unit vectors the along x, y, z directions. In particular, the displacement from the origin of coordinates to a point                 (x, y, z) is a vector. This is written as   r = x i + y j + z k and called the position vector of the point (x, y, z). We will often refer simply to the ‘point r’, since there is no ambiguity in doing so. The displacement vector from point r1 to point r2 is r2 − r1.

5.2 Dot product

There are two different ways in which we can usefully define the multiplication of two vectors. The first of these is called the scalar or dot product. The picture below gives its definition for two vectors 
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 and 
[image: image3.wmf]b

uv

 and also shows a very neat practical application.
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The man is pulling the block with a constant force a so that it moves along the horizontal ground. The work done in moving the block through a distance b is then given by the distance moved through multiplied by the magnitude of the component of the force in the direction of motion. This is          
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 so we define the scalar or dot product as 
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Where 
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 and t is the angle between 
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 when they are placed tail to tail. To use the least amount of force possible, we would need to pull horizontally, so that we are pulling in the same direction as we want the object to move. Then we would have t = 0 and cos t =1 so that work done = 
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= |a||b| = magnitude of the force x distance moved in the direction of the force.

Each of the lengths 
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 is a number and cos t is a number, so 
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is not a vector but a number or scalar. This is why it's called the scalar product. 

Since 
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 are all one unit in length and they are all mutually perpendicular, we have
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We now have a neat way of finding whether two vectors are perpendicular. Because algebra is difficult to show on the web, I'll give a numerical example.

Example 1

Suppose that 
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It can be shown that it is all right to multiply the two vectors 
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 by working out all the separate multiplications of the components. Using this and the results above, we get


[image: image56.wmf]ab

·

uv

uv

= (3 x 2) + (5 x -2) + (-2 x -2) = 6 - 10 + 4 = 0. Since neither 
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= 0 we have cos t = 0 so t = 90 degrees, i.e. 
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 are perpendicular.
Example 2
We've now got a way of working out the angle between then directions of any two vectors. Again I'll take a numerical example. We'll find the angle between
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Since 
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 = the square root of (4 + 9 + 1) = 3.742 and                
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= the square root of (16 + 1 + 9) = 5.099 also we have 
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= (2 x 4) + (-3 x 1) + (1 x -3) = 2. But a.b = |a||b| cos t, we now have 2=3.742 x 5.099 x cos t so cos t = 0.1048 and          t = 84 degrees. In other words "Scalar product" redirects here. The dot product contrasts (in three dimensional spaces) with the cross product, which produces a vector as result. The dot product of two vectors 
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 = [b1, b2, b3, bn] is defined as  
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Where Σ denotes summation notation and n is the dimension of the vector space.

Example 3

In dimension 2, the dot product of vectors [a, b] and [c, d] is ac + bd. Similarly, in a dimension 3, the dot product of vectors [a, b, c] and [d,e,f] is ad + be + cf. For example, the dot product of two three-dimensional vectors [1, 3, −5] and [4, −2, −1] is  [1, 3, −5] . [4, −2, −1] = 1(4) + 3(-2) - 5(-1) = 3

The dot product can also be obtained via transposition and matrix multiplication as follows:
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We can summarize all above properties of scalar (dot) product such that in Euclidean geometry, the dot product, length, and angle are related. For a vector
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Where 
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 denotes the length (magnitude) of 
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. More generally, if 
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,                                                and θ is the angle between them as mentioned before. This formula can be rearranged to determine the size of the angle between two nonzero vectors such that   
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.                                                   One can also first convert the vectors to unit vectors by dividing by their magnitude   
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Then the angle θ is given by 
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The terminal points of both unit vectors lie on the unit circle. The unit circle is where the trigonometric values for the six trig functions are found. After substitution, the first vector component is cosine and the second vector component is sine, i.e. (cos x, sin x) for some angle x. The dot product of the two unit vectors takes <cos x, sin x> <cos y, sin y> for angles x, y and returns (cos x)(cos y) + (sin x)(sin y) =              cos(x − y) where x − y = θ . As the cosine of 90° is zero, the dot product of two orthogonal vectors is always zero. Moreover, two vectors can be considered orthogonal if and only if their dot product is zero, and they have non-null length. This property provides a simple method to test the condition of orthogonality. Sometimes these properties are also used for defining the dot product, especially in 2 and 3 dimensions; this definition is equivalent to the above one. For higher dimensions the formula can be used to define the concept of angle. The geometric properties rely on the basis being orthonormal, i.e. composed of pair wise perpendicular vectors with unit length.

If both 
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 have length one (i.e., they are unit vectors), their dot product simply gives the cosine of the angle between them. If only 
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 is a unit vector, then the dot product 
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cos(θ), i.e., the magnitude of the projection of 
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, with a minus sign if the direction is opposite. This is called the scalar projection of 
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, or scalar component of a in the direction of b. This property of the dot product has several useful applications. If neither a nor 
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The following properties hold if 
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 are real vectors and r is a scalar.

· The dot product is commutative   
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· The dot product is distributive over vector addition:
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· The dot product is bilinear:
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· When multiplied by a scalar value, dot product satisfies:

(c1
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· Two non-zero vectors a and b are perpendicular iff
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Unlike multiplication of ordinary numbers, where if ab = ac, then b always equals c unless a is zero, the dot product does not obey the cancellation law:

If 
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 and a ≠ 0, then we can write 
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)=0. By the distributive law; the result above says this just means that 
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. Provided that the basis is orthonormal, the dot product is invariant under isometric changes of the basis: rotations, reflections, and combinations, keeping the origin fixed. The above mentioned geometric interpretation relies on this property. In other words, for an orthonormal space with any number of dimensions, the dot product is invariant under a coordinate transformation based on an orthogonal matrix. This corresponds to the following two conditions:

The new basis is again orthonormal (i.e., it is orthonormal expressed in the old one).

The new base vectors have the same length as the old ones (i.e., unit length in terms of the old basis).

If a and b are vector functions, then the derivative of 
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The dot product gives us a very nice method for determining if two vectors are perpendicular and it will give another method for determining when two vectors are parallel.  Note as well that often we will use the term orthogonal in place of perpendicular.

Now, if two vectors are orthogonal then we know that the angle between them is 90 degrees, i.e. if two vectors are orthogonal then  
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Likewise, if two vectors are parallel then the angle between them is either 0 degrees (pointing in the same direction) or 180 degrees (pointing in the opposite direction).  Once again this would mean that one of the following would have to be true.
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5.3 Cross product

In mathematics, the cross product, vector product or Gibbs vector product is a binary operation on two vectors in three-dimensional space. It has a vector result, which is perpendicular to both vectors. If either of the vectors being multiplied is zero or the vectors are parallel then their cross product is zero. More generally, the magnitude of the product equals the area of a parallelogram with the vectors for sides; in particular for perpendicular vectors this is a rectangle and the magnitude of the product is the product of their lengths. The cross product is anti-commutative, distributive over addition and satisfies the Jacobi identity. The space and product form algebra over a field, which is neither commutative nor associative. The cross product of two vectors 
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 is used though this is avoided in mathematics to avoid confusion with the exterior product. The cross product 
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, with a direction given by the right-hand rule and a magnitude equal to the area of the parallelogram that the vectors span. The cross product is defined by the formula
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where θ is the measure of the smaller angle between 
[image: image176.wmf]a

uv

 & 
[image: image177.wmf]b

uv

 (0° ≤ θ ≤ 180°), 
[image: image178.wmf]a

v

 and 
[image: image179.wmf]b

v

 are the magnitudes of vectors 
[image: image180.wmf]a

uv

 and 
[image: image181.wmf]b

uv

, and 
[image: image182.wmf]µ

n
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 in the direction given by the right-hand rule as illustrated.           
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If the vectors 
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 are parallel (i.e., the angle θ between them is either 0° or 180°), by the above formula, the cross product of 
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 is coming out of the thumb (see the picture on the right). Using this rule implies that the cross-product is anti-commutative, i.e. 
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Using the cross product requires the handedness of the coordinate system to be taken into account. If a left-handed coordinate system is used, the direction of the vector 
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Unit vectors 
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Together with the skew-symmetry and bilinearity of the cross product, these three identities are sufficient to determine the cross product of any two vectors. In particular, the following identities are also seen to hold  
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With these rules, the coordinates of the cross product of two vectors can be computed easily, without the need to determine any angles: If  
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 = (b1, b2, b3), the cross product can be calculated by distributive cross-multiplication:    
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Since scalar multiplication is commutative with cross multiplication, the right hand side can be regrouped as                
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 × 
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This equation is the sum of nine simple cross products. After all the multiplication is carried out using the basic cross product relationships between
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, 
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, and 
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 defined above,
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 × 
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This equation can be factored to form 
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 × 
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= (a2b3 − a3b2) 
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= (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1).

The definition of the cross product can also be represented by the determinant of a formal matrix:
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This determinant can be computed using Sarrus' rule or Cofactor expansion. Using Sarrus' Rule, it expands to 
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The magnitude of the cross product can be interpreted as the positive area of the parallelogram having vectors 
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 (as shown in Figure 1).
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Indeed, one can also compute the volume V of a parallelepiped having vectors 
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uv

, 
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 and 
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 as sides by using a combination of a cross product and a dot product, called scalar triple product such that V = 
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 (as shown in Figure 2):

 


                                                      

Figure 2 demonstrates that this volume can be found in two ways, showing geometrically that the identity holds that a "dot" and a "cross" can be interchanged without changing the result. That is:

V = 
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Because the magnitude of the cross product goes by the sine of the angle between its arguments, the cross product can be thought of as a measure of "perpendicularness" in the same way that the dot product is a measure of "parallelness". Given two unit vectors, their cross product has a magnitude of 1 if the two are perpendicular and a magnitude of zero if the two are parallel. 
Dashed lines show the projections of 
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, a first step in finding dot-products. The cross product is anti-commutative such that 
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The cross product of parallel vectors is the null vector, in particular:    
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Also | 
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| is the area of the parallelogram formed by 
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. To find the volume of the parallelepiped spanned by three vectors 
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               Volume = 
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5.4 Differentiation of vector-valued functions

A vector-valued function also referred to as a vector function is a mathematical function of one or more variables whose range is a set of multidimensional vectors or infinite-dimensional vectors. The input of a vector-valued function could be a scalar or a vector. The dimension of the domain is not defined by the dimension of the range.

A common example of a vector valued function is one that depends on a single real number parameter t, often representing time, producing a vector 
[image: image360.wmf]v

uv

(t) as the result. In terms of the standard unit vectors 
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 of Cartesian               3-space, these specific type of vector-valued functions are given by expressions such as 
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The domain of a vector-valued function is the intersection of the domain of the functions f, g, and h.

We will discuss different types of derivatives" of scalar and vector functions; in some cases the result is a scalar and sometimes a vector.
Suppose that 
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(t) and 
[image: image369.wmf]w

uuv

(t) are vector valued functions, f(t) is a scalar function, and c is a real number then there are a number of different products that can be made;
	Name of product
	Formula
	Type of result

	Scalar multiplication
	f(t)
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	Vector

	Scalar or dot product
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	Vector or cross product
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In other words;
1. d/dt[
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 (t)] = d/dt[
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(t)] 

2. d/dt[c
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(t)] = c d/dt[
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(t)] 

3. d/dt[f(t) 
[image: image382.wmf]v

uv

(t)] = f '(t) 
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(t) + f(t) 
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4. [
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5. (
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6. d/dt[
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(f(t))] = 
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'(f(t)) f '(t)

Consider the vector differential operator 
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A vector function of r, as in 
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(r) is a vector field. A vector field may depend on additional variables (typically time) as well 
[image: image415.wmf]v

uv

(r, t) and sometimes we are interested in a vector field along a path v(r(s), t).

Differentiation with respect to t is straightforward and derivatives of products are 
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 as mentioned above, but differentiation with respect to x, y, z does not behave in the same straightforward way. For those we need a new ingredient, the 
[image: image418.wmf]Ñ

 operator.

Directional derivative

This is the rate of change of a scalar field f in the direction of a unit vector  
[image: image419.wmf]u
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  = (u1, u2, u3). As with normal derivatives it is defined by the limit of a difference quotient, in this case the direction derivative of f at p in the direction 
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If limit exist, it is denoted by 
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.This definition is rarely used directly. The key formula for the directional derivatives of f in the direction 
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 is 
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The formula for directional derivatives can only be used for unit vectors. To calculate the directional derivative along a non-unit vector
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, one must use the unit vector having the same direction as v that is   
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Example 4:

Find the directional derivative of f = x2yz3 at the point              P(3, -2, -1) in the direction of the vector (1, 2, 2).

Solution: 
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 = (1/3, 2/3, 2/3), thus  
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 = (1/3)(2xyz3) + (2/3) (x2z3)+ (2/3) (3x2yz2), therefore the directional derivative of f at the point P(3, -2, -1) equal -38.
5.5 Vector operation 
Vector calculus studies various differential operators defined on scalar or vector fields, which are typically expressed in terms of the delta operator (
[image: image439.wmf]Ñ

). The three most important operations in vector calculus are:
	Operation
	Notation
	Description

	Gradient
	grad (f) = 
[image: image440.wmf]Ñ

f
	Measures the rate and direction of change in a scalar field that maps scalar fields to vector fields.

	Curl
	curl(f)= 
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×
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	Measures the tendency to rotate about a point in a vector field that maps vector fields to vector fields.

	Divergence
	div(f) = 
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	Measures the magnitude of a source or sink at a given point in a vector field that maps vector fields to scalar fields.


Where the curl and divergence differ because the former uses a cross product and the latter dot product, and f denotes a scalar field and F denotes a vector field. A quantity called the Jacobian is useful for studying functions when both the domain and range of the function are multivariable, such as a change of variables during integration.

Gradient

The gradient (or gradient vector field) of a scalar function f(x1, x2, x3, …, xn) is denoted 
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 where 
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 denotes the vector differential operator. The gradient of f is defined to be the vector field whose components are the partial derivatives of f. That is: 
[image: image448.wmf]f

Ñ

 = (
[image: image449.wmf]1

f

x

¶

¶

, 
[image: image450.wmf]2

f

x

¶

¶

,…, 
[image: image451.wmf]n

f

x

¶

¶

)                                    (11)
Curl
The Curl of vector function 
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=( f1, f2, f3,…, fn) in (x1, x2, x3, …, xn)  is denoted 
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Divergence
The divergence of vector function 
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 = ( f1, f2, f3,…, fn) in            (x1, x 2, x 3, …, xn)  is denoted 
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A particular example of divergence is the Laplacian of a scalar field. Given a scalar field f, grad f = 
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 is a vector field and the divergence of 
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 is the Laplacian of f, written
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. This means that 
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is denoted by      div (grad f).

Example 5: 

Find grad (div 
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) where 
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= (xy+z)I + x2yzj – (sin(xz))k

Solution: 

From above definition of divergence, we get div 
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 =  y+x2z-xcos(xz) and hence grad(div
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) = [2xz-cos(xz) + xz sin(xz)]
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 +
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Example 6: 

Show that the divergence of 
[image: image471.wmf]F

uuv

 = (x - y2, z, z3) is positive at all points in
[image: image472.wmf]3
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.
Solution:

Div(F) = 
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 = 1+3z2, therefore div(
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) is positive at all points in
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5.6 Problems

1- Find the dot product of   2
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2- Find the angle between 
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3- Find 
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a) 
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b) 
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c) 
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4- Find the volume of the parallelepiped spanned by the vectors   
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  =  (1,0,2)        
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  =  (0,1,3)

5- Find the area of the parallelogram formed by the vectors 
[image: image515.wmf]a

uv

 and 
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, given 
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 = (1, -1, 3, 5), 
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 = (2, 7, -2, 3).

6- Determine if the following vectors are parallel, orthogonal, or neither.

a) 
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 = (6, -2, -1),    
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 = (2, 5, 2) 

b) 
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7- Find grad (div (curl 
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) for the following vectors

a) 
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 = (xy + ztanx) 
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b) 
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 = (xycosz + y2ztanx) 
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 – (xy sin(z)) 
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8- Find the gradient of the scalar field f(x,y,z)=x2y+xcosh yz.

9- 
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 = (x, y, z) so that r = ǀRǀ = 
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. Show that 
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, for any integer n, then deduce grad (r),       grad (r2), grad (1/r),grad (
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) where 
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 is a constant vector. Find the values of n for which 
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10- Determine curl
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 when 
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 = (x2y, xy2 + z, xy).
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Figure 1: The area of a parallelogram as a cross product








Figure 2: The volume of a parallelepiped using dot and cross product
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